概要:高三数学章末综合测试题(5)三角函数、解三角形一、选择题:本大题共12小题,每小题5分,共60分.1.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为()A.-12B.12C.-32D.32解析:∵|OP|=64m2+9,且cosα=-8m64m2+9=-45, ∴m>0,且64m264m2+9=-1625=-45,∴m=12.答案:B2.已知扇形的周长为6 cm,面积是2 cm2,则扇形的圆心角的弧度数是()A.1 B.4 C.1或4 D.2或4解析:设扇形的圆心角为α rad,半径为R, 则2R+α•R=6,12α•R2=2,解得α=1,或α=4.答案:C3.已知函数f(x)=sinωx+π3(ω>0)的最小正周期为π,则该函数图像()A.关于直线x=π4对称
高三数学三角函数、解三角形训练题,标签:高三数学学习方法介绍,http://www.88haoxue.com
高三数学章末综合测试题(5)三角函数、解三角形
一、选择题:本大题共12小题,每小题5分,共60分.
1.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为( )
A.-12 B.12 C.-32 D.32
解析:∵|OP|=64m2+9,且cosα=-8m64m2+9=-45,
∴m>0,且64m264m2+9=-1625=-45,∴m=12.
答案:B
2.已知扇形的周长为6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( )
A.1 B.4 C.1或4 D.2或4
解析:设扇形的圆心角为α rad,半径为R,
则2R+α•R=6,12α•R2=2,解得α=1,或α=4.
答案:C
3.已知函数f(x)=sinωx+π3(ω>0)的最小正周期为π,则该函数图像( )
A.关于直线x=π4对称 B.关于点(π3,0)对称
C.关于点(π4,0)对称 D.关于直线x=π3对称
解析:∵T=π,∴ω=2.
∵当x=π4 时,f(x)=12;当x=π3时,f(x)=0,∴图像关于(π3,0)中心对称.
答案:B
4.要得到函数y=cos2x的图像,只需将函数y=cos2x-π3的图像( )
A.向右平移π6个单位 B.向右平移π3个单位
C.向左平移π3个单位 D.向左平移π6个单位
解析:由cos2x=cos2x-π3+π3=cos2x+π6-π3
知,只需将函数y=cos2x-π3的图像向左平移π6个单位.
答案:D
5.若2a=3sin2+cos2,则实数a的取值范围是( )
A.0,12 B.12,1
C.-1,-12 D.-12,0
解析:∵3sin2+cos2=2sin2+π6,又34π<2+π6<56 π,∴1<2sin2+π6<2,
即1<2a<2,∴0<a<12.
答案:A
6.函数y=3sin-2x-π6(x∈[0,π])的单调递增区间是( )
A.0,5π12 B.π6,2π3
C.π6,11π12 D.2π3,11π12
解析:∵y=-3sin2x+π6,∴由2kπ+π2≤2x+π6≤2kπ+3π2,k∈Z,得
kπ+π6≤x≤kπ+2π3,k∈Z. 又x∈[0,π],∴k=0.此时x∈π6,2π3.
答案:B
7.已知tanα=12,tan(α-β)=-25,那么tan(2α-β)的值是( )
A.-112 B.112 C.322 D.318
解析:tan(2α-β)=tan[α+(α-β)]=tanα+tan(α-β)1-tanαtan(α-β)=12-251-12×-25=112.
答案:B
8.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期为π,且当x∈0,π2时,f(x)=sinx,则f5π3的值为( )
A.-12 B.12 C.-32 D.32
解析:f5π3=f5π3-2π=f-π3=fπ3=sinπ3=32.
答案:D
9.已知cosπ4+θcosπ4-θ=14,则sin4θ+cos4θ的值等于( )
A.34 B.56 C.58 D.32
解析:由已知,得sinπ4-θcosπ4-θ=14,即12sinπ2-2θ=14,∴cos2θ=12.
∴sin22θ=1-122=34。则sin4θ+cos4θ=1-2sin2θcos2θ=1-12sin22θ=1-38=58.
答案:C
10.已知α、β为锐角,且sinα=55,sinβ=1010,则α+β=( )
A.-3π4 B.π4或3π4 C.3π4 D.π4
解析:∵α、β为锐角,且sinα=55,sinβ=1010,
∴cosα=255,cosβ=31010,且α+β∈(0,π),∴cos(α+β)=cosαcosβ-sinαsinβ
=65050-5050=55050=22, ∴α+β=π4.
答案:D
11.在△ABC中,cos2B2=a+c2c(a、b、c分别为角A、B、C的对边),则△ABC的形状为( )
A.等边三角形 B.直角三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,
∴cosB=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2, 故△ABC为直角三角形.
答案:B
12.在沿海某次台风自然灾害中,台风中心最大风力达到10级以上,大风降雨给沿海地区带为严重的灾害,不少大树被大风折断,某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是( )
上一篇:高三立体几何章末综合测试题
最新更新
推荐热门