您当前所在位置:
88好学网教育学习大全教学设计数学教学设计八年级数学教学设计用坐标表示轴对称教案» 正文

用坐标表示轴对称教案

[07-12 16:04:53]   来源:http://www.88haoxue.com  八年级数学教学设计   阅读:68825

概要: 续表 已知点 D( ,1) E(4,0) 关于x轴的对称点 D′( ,-1) E′(4,0) [师]观察上表每对对称点坐标之间的关系,你发现什么规律? [生]每对对称点的横坐标相同,纵坐标互为相反数. [师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗? 学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律. [师生共析] 关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数. 接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标. [生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标. 过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,且AN=A″

用坐标表示轴对称教案,标签:八年级数学教学设计模板,http://www.88haoxue.com
    续表
    已知点 D( ,1)
    E(4,0)
    关于x轴的对称点 D′( ,-1)
    E′(4,0)
    [师]观察上表每对对称点坐标之间的关系,你发现什么规律?
    [生]每对对称点的横坐标相同,纵坐标互为相反数.
    [师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?
    学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.
    [师生共析]
    关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.
    接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.
    [生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.
    过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(- ,1),E″(-4,0).列表如下:
    已知点    A(2,-3) B(-1,2) C(-6,-5)
 关于y轴对称点 A″(-2,-3)   B″(1,2) C″(6,-5)
    续表
    已知点    D( ,1)
    E(4,0)
    关于y轴对称点 D″( ,1)
    E″(-4,0)
    [师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?
    [生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.
    Ⅲ.随堂练习
    [活动3]
    练习:(教科书P133练习)
    1.分别写出下列各点关于x轴和y轴对称的点的坐标:
    (-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
    2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.
    3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形.
    设计意图:
    巩固关于x轴、y轴对称的每对对称点的坐标规律.根据已知点,能求出关于x轴、y轴对称的点的坐标,并能利用关于坐标轴对称的点的坐标特点,作出与已知图形关于坐标轴对称的图形.
    师生行为:
    学生练习,教师巡视,师生共评.
    [生]1.解:根据关于x轴对称的点的坐标的特点求得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于x轴对称的点的坐标分别为(-2,-6),(1,2),(-1,-3),(-4,2),(1,0).
    根据关于y轴对称的点的坐标的特点可得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于y轴对称的点的坐标分别为(2,6),(-1,-2),(1,3),(4,-2),(-1,0).
    2.△ABC关于x轴对称,则A、B为关于x轴的一对对称点,已知A的坐标为(1,-2),则B的坐标为(1,2).
    3.分析:要作出与△ABC关于x轴、y轴的对称图形,只需把A、B、C关于x轴、y轴的对称点找到即可.
    解:△ABC各顶点的坐标:A(-4,1),B(-1,-1),C(-3,2)它们关于x轴对称的点的坐标为A1(-4,-1),B1(-1,1),C1(-3,-2).在同一直角坐标系中描出A1(-4,-1),B1(-1,1),C1(-3,-2)连结A1B1,B1C1,C1A1,则△A1B1C1就是△ABC关于x轴对称的图形(如图).
    A(-4,1),B(-1,-1),C(-3,2)它们关于y轴对称的点的坐标为A2(4,1),B2(1,-1),C2(3,2).在同一坐标系中描出A2(4,1),B2(1,-1),C2(3,2),连结A2B2,B2C2,C2A2,则△A2B2C2就是△ABC关于y轴对称的图形(如图).
    [活动4]
    补充练习:
    1.将下图中的点(2,1),(5,1),(2,5)做如下变化:
    (1)纵坐标不变,横坐标分别加2.
    (2)横坐标不变,纵坐标分别加1.
    (3)纵坐标不变,横坐标分别变为原来的2倍.
    (4)横坐标不变,纵坐标分别变为原来的2倍.
    (5)纵坐标不变,横坐标分别乘以-1.
    (6)横坐标不变,纵坐标分别乘以-1.
    (7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化?
    设计意图:
    进一步让同学们亲身经历点的坐标的变化与图形变换之间的关系.
    师生行为:
    学生练习,教师指导.
    精析:行根据变化,把每次变化后的三个顶点坐标求出,在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较.
    精解:(1)纵坐标不变,横坐标分别加2得三个点依次为(4,1),(7,1),(4,5).将各点用线段依次连结起来,所得图形如图(1)所示,与原图形相比三角形的形状、大小不变,整个三角形向右平移了2个单位长度.
    (2)横坐标不变,纵坐标分别加1,得三个点依次为(2,2),(5,2),(2,6).将各点用线段依次连结起来,所得图形如图(2)所示,与原图形相比,三角形的形状、大小不变,整个三角形向上平移了1个单位长度.
    (3)纵坐标不变,横坐标分别变为原来的2倍,得三个点依次为(4,1),(10,1),(4,5).将各点用线段依次连结起来,所得图形如图(3)所示,与原图形相比,整个三角形被横向拉长为原来的2倍.


www.88haoxue.com     (4)横坐标不变,纵坐标分别变为原来的2倍,得三个点依次为(2,2),(5,2),(2,10).将各点依次用线段连结起来,所得图形如图(4)所示,与原图形相比,整个三角形被纵向拉长2倍.
    (5)纵坐标不变,横坐标分别乘以-1,得三个点坐标为(-2,1),(-5,1),(-2,5).将各点依次用线段连结起来,如图(5)所示,与原图形相比,三角形的形状、大小不变,整个三角形与原三角形关于y轴对称.

上一页  [1] [2] [3]  下一页


Tag:八年级数学教学设计八年级数学教学设计模板教学设计 - 数学教学设计 - 八年级数学教学设计

上一篇:轴对称变换2

》《用坐标表示轴对称教案》相关文章