概要: 解法一:(1)由题设这10点所确定的直线是C102=45条。 这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数; 所以这些直线交成新的点是:C452-10C92=630。 (2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。 解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。 (2)同解法一。 点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。 例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且
排列、组合、二项式定理教案2,标签:高三数学教学设计模板,http://www.88haoxue.com
解法一:(1)由题设这10点所确定的直线是C102=45条。
这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数;
所以这些直线交成新的点是:C452-10C92=630。
(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。
解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。
(2)同解法一。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
解 设倾斜角为θ,由θ为锐角,得tanθ=- >0,即a、b异号。
(1)若c=0,a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0),故有3×3-2=7(条);
(2)若c≠0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条,从而符合要求的直线共有7+36=43条;
点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。
题型5:二项式定理
例9.(1)(湖北卷)在 的展开式中, 的幂的指数是整数的项共有
A.3项 B.4项 C.5项 D.6项
(2) 的展开式中含x的正整数指数幂的项数是
(A)0 (B)2 (C)4 (D)6
解析:本题主要考查二项式展开通项公式的有关知识;
(1) ,当r=0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C;
(2) 的展开式通项为 ,因此含x的正整数次幂的项共有2项.选B;
点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令 .在二项式的展开式中,要注意项的系数和二项式系数的区别。
例10.(1)(06江西卷)在(x- )2006 的二项展开式中,含x的奇次幂的项之和为S,当x= 时,S等于( )
A.23008 B.-23008 C.23009 D.-23009
(2)(06山东卷)已知 的展开式中第三项与第五项的系数之比为- ,其中 =-1,则展开式中常数项是( )
(A)-45i (B) 45i (C) -45 (D)45
(3)(06浙江卷)若多项式
( )
(A)9 (B)10 (C)-9 (D)-10
解析:(1)设(x- )2006=a0x2006+a1x2005+…+a2005x+a2006;
则当x= 时,有a0( )2006+a1( )2005+…+a2005( )+a2006=0 (1),
当x=- 时,有a0( )2006-a1( )2005+…-a2005( )+a2006=23009 (2),
(1)-(2)有a1( )2005+…+a2005( )=-23009 2=-23008,,故选B;
(2)第三项的系数为- ,第五项的系数为 ,由第三项与第五项的系数之比为- 可得n=10,则 = ,令40-5r=0,解得r=8,故所求的常数项为 =45,选A;
(3)令 ,得 ,令 ,得 ;
点评:本题考查二项式展开式的特殊值法,基础题;
题型6:二项式定理的应用
例11.证明下列不等式:
(1) ≥( )n,(a、b∈{x|x是正实数},n∈N);
(2)已知a、b为正数,且 + =1,则对于n∈N有
(a+b)n-an-bn≥22n-2n+1。
证明:(1)令a=x+δ,b=x-δ,则x= ;
an+bn=(x+δ)n+(x-δ)n
=xn+Cn1xn-1δ+…+Cnnδn+xn-Cn1xn-1δ+…(-1)nCnnδn
www.88haoxue.com
=2(xn+Cn2xn-2δ2+Cn4xn-4δ4+…)
≥2xn
即 ≥( )n
(2)(a+b)n=an+Cn1an-1b+…+Cnnbn
(a+b)n=bn+Cn1bn-1a+…+Cnnan
上述两式相加得:
2(a+b)n=(an+bn)+Cn1(an-1b+bn-1a)+…+Cnk(an-kbk+bn-kak)+…+Cnn(an+bn) (*)
上一页 [1] [2] [3] [4] 下一页
Tag:高三数学教学设计,高三数学教学设计模板,教学设计 - 数学教学设计 - 高三数学教学设计