您当前所在位置:
88好学网教育学习大全教学设计数学教学设计高三数学教学设计排列、组合、二项式定理教案2» 正文

排列、组合、二项式定理教案2

[07-12 17:19:39]   来源:http://www.88haoxue.com  高三数学教学设计   阅读:68853

概要: 解法一:(1)由题设这10点所确定的直线是C102=45条。 这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数; 所以这些直线交成新的点是:C452-10C92=630。 (2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。 解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。 (2)同解法一。 点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。 例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且

排列、组合、二项式定理教案2,标签:高三数学教学设计模板,http://www.88haoxue.com
    解法一:(1)由题设这10点所确定的直线是C102=45条。
    这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数;
    所以这些直线交成新的点是:C452-10C92=630。
    (2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。
    解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。
    (2)同解法一。
    点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
    例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
    解  设倾斜角为θ,由θ为锐角,得tanθ=- >0,即a、b异号。
    (1)若c=0,a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0),故有3×3-2=7(条);
    (2)若c≠0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条,从而符合要求的直线共有7+36=43条;
    点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。
    题型5:二项式定理
    例9.(1)(湖北卷)在 的展开式中, 的幂的指数是整数的项共有
    A.3项             B.4项          C.5项            D.6项
(2) 的展开式中含x的正整数指数幂的项数是
    (A)0     (B)2     (C)4     (D)6
    解析:本题主要考查二项式展开通项公式的有关知识;
    (1) ,当r=0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C;
    (2) 的展开式通项为 ,因此含x的正整数次幂的项共有2项.选B;
    点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令 .在二项式的展开式中,要注意项的系数和二项式系数的区别。
    例10.(1)(06江西卷)在(x- )2006 的二项展开式中,含x的奇次幂的项之和为S,当x= 时,S等于(  )
    A.23008            B.-23008             C.23009          D.-23009
    (2)(06山东卷)已知 的展开式中第三项与第五项的系数之比为- ,其中 =-1,则展开式中常数项是(   )
    (A)-45i           (B) 45i            (C) -45            (D)45
    (3)(06浙江卷)若多项式
    (   )
    (A)9            (B)10           (C)-9             (D)-10
    解析:(1)设(x- )2006=a0x2006+a1x2005+…+a2005x+a2006;
    则当x= 时,有a0( )2006+a1( )2005+…+a2005( )+a2006=0 (1),
    当x=- 时,有a0( )2006-a1( )2005+…-a2005( )+a2006=23009 (2),
    (1)-(2)有a1( )2005+…+a2005( )=-23009 2=-23008,,故选B;
    (2)第三项的系数为- ,第五项的系数为 ,由第三项与第五项的系数之比为- 可得n=10,则 = ,令40-5r=0,解得r=8,故所求的常数项为 =45,选A;
    (3)令 ,得 ,令 ,得 ;
    点评:本题考查二项式展开式的特殊值法,基础题;
    题型6:二项式定理的应用
    例11.证明下列不等式:
    (1) ≥( )n,(a、b∈{x|x是正实数},n∈N);
    (2)已知a、b为正数,且 + =1,则对于n∈N有
    (a+b)n-an-bn≥22n-2n+1。
    证明:(1)令a=x+δ,b=x-δ,则x= ;
    an+bn=(x+δ)n+(x-δ)n
    =xn+Cn1xn-1δ+…+Cnnδn+xn-Cn1xn-1δ+…(-1)nCnnδn


www.88haoxue.com     =2(xn+Cn2xn-2δ2+Cn4xn-4δ4+…)
    ≥2xn
    即 ≥( )n
    (2)(a+b)n=an+Cn1an-1b+…+Cnnbn
    (a+b)n=bn+Cn1bn-1a+…+Cnnan
    上述两式相加得:
    2(a+b)n=(an+bn)+Cn1(an-1b+bn-1a)+…+Cnk(an-kbk+bn-kak)+…+Cnn(an+bn)   (*)

上一页  [1] [2] [3] [4]  下一页


Tag:高三数学教学设计高三数学教学设计模板教学设计 - 数学教学设计 - 高三数学教学设计
》《排列、组合、二项式定理教案2》相关文章