您当前所在位置:
88好学网教育学习大全教学设计数学教学设计高三数学教学设计排列、组合、二项式定理教案» 正文

排列、组合、二项式定理教案

[07-12 17:19:40]   来源:http://www.88haoxue.com  高三数学教学设计   阅读:68113

概要:教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论; (2)能结合树形图来帮助理解加法原理与乘法原理; (3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关; (4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力; (5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。 教学建议 一、知识结构 二、重点难点分析 本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。 加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。 两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法

排列、组合、二项式定理教案,标签:高三数学教学设计模板,http://www.88haoxue.com

教学目标
    (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
    (2)能结合树形图来帮助理解加法原理与乘法原理;
    (3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
    (4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
    (5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
    教学建议
    一、知识结构
    二、重点难点分析
    本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
    加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
    两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
    三、教法建议
    关于两个计数原理的教学要分三个层次:
    第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
    第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
    ①用0,1,2,……,9可以组成多少个8位号码;
    ②用0,1,2,……,9可以组成多少个8位整数;
    ③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
    ④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
    ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
    ⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
    第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
    教学设计示例
    加法原理和乘法原理
    教学目标
    正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
    教学重点和难点
    重点:加法原理和乘法原理.
    难点:加法原理和乘法原理的准确应用.
    教学用具
    投影仪.
    教学过程设计
    (一)引入新课
    从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
    今天我们先学习两个基本原理.
    (二)讲授新课
    1.介绍两个基本原理
    先考虑下面的问题:
    问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
    因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.
    这个问题可以总结为下面的一个基本原理(打出片子——加法原理):
    加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.
    请大家再来考虑下面的问题(打出片子——问题2):
    问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
    这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
    一般地,有如下基本原理(找出片子——乘法原理):
    乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.


www.88haoxue.com     2.浅释两个基本原理
    两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.

[1] [2] [3]  下一页


Tag:高三数学教学设计高三数学教学设计模板教学设计 - 数学教学设计 - 高三数学教学设计
》《排列、组合、二项式定理教案》相关文章